FRESCO: Coupled-channels Calculations

Finite-Range with Exact Strong COuplings.

Talk at INT 15-58W, Seattle
Wed, March 4, 2015

Ian Thompson
Fresco

- Started in 1983 at Daresbury Laboratory
- First for 2-step transfer contributions to $^{17}\text{O}^*$.
- Source & docs available at www.fresco.org.uk, hosted at Univ. Surrey.
- Versions since 2006: ‘public’ FRES (3.1), and ‘Livermore’ FRXY (6l)
- Still being maintained, and developed, with queries answered.
2-step transfer contributions to 17O*

Lilley et al, NPA 463, 710 (1987)

Fig. 2. Differential cross section measurements of the 208Pb (17O, 17O*(1/2$^+$))208Pb (upper) and the 208Pb (18O, 18O*(2$^+$)) 208Pb (lower) reactions at 78 MeV incident energy. The curves are theoretical calculations. The dot–dashed curve includes Coulomb excitation and the nuclear core (16O) excitation only. Adding the valence neutron interaction gives the short-dashed (“direct only”) curve. The effect of adding two-step transfer processes using the approximations of ref. [1] is given by the long-dashed curve; the solid curve is the result of a more rigorous calculation described in the text.

Fig. 6. Channel couplings used in the multistep CRC calculations of the 17O+208Pb interaction at 78 MeV.
Documentation

- Input manual

See http://www.fresco.org.uk/documentation.htm
Basic Idea

- Reactions between two nuclei: entrance and exit
- Multiple mass partitions.
- Energy, spin and parity given for all initial and final states of all nuclei.
- Unlimited lists of potentials and couplings.
- Solve coupled equations
- Predict cm cross section distributions.

- Standard forms for
 - optical potentials,
 - bound states,
 - inelastic, transfer and capture mechanisms,
 - etc

- Written in Fortran 90
 - Tested on wide range of compilers
The Coupled Equations

For each total spin J_{tot} and parity π

$$[T_{xL}(R) + V_c(R) - E_{expt}]\psi_\alpha(R) + \sum_{\alpha'} \langle \alpha | V | \alpha' \rangle \psi_{\alpha'}(R') = 0.$$

with

$$\hat{T}_{xL}(R_x) = -\frac{\hbar^2}{2\mu_x} \left[\frac{d^2}{dR_x^2} - \frac{L_x(L_x+1)}{R_x^2} \right]$$

and

$$\langle \alpha | V | \alpha' \rangle \quad \text{either local } R=R', \text{ or non-local } R\not=R'$$

satisfying the boundary conditions

$$\psi_{J_{tot}^{\pi}}(R_x) = \frac{i}{2} \left[H^{-}_{L_i}(\eta_\alpha, k_\alpha R_x) \delta_{\alpha \alpha_i} - H^{+}_{L_i}(\eta_\alpha, k_\alpha R_x) S^{J_{tot}^{\pi}}_{\alpha \alpha_i} \right]$$
Optical and Binding Potentials

- Central, spin-orbit and tensor forces.
- WS, Gaussian (etc) shapes, or read in.
- Deformation by rotational model, or by arbitrary strengths
- Linear energy interpolations.

- L-, J-, and parity-dependent potentials.
- Effective masses $m^*(r)$
- Lane isospin couplings
Coupling Mechanisms

- Inelastic
 - Deformed optical potls.
 - Single-particle excitations

- Transfers of a cluster
 - Zero range, LEA.
 - Finite range
 - Non-orthogonality terms.

- Two-nucleon transfers
 - From & to correlated 2N wfs from correlated 1N wfs, or read in from 3-body code.
 - Sequential and Simultaneous

- Capture to γ channels
 - E_k in Siegert approx.
 - M_k magnetic transitions
 - (both in localized approx.)

- R-matrix phenomenology

- General LSJ couplings
 - Local or non-local
 - Numerical forms read in

- General partial wave couplings
 - Numerical local or nonlocal
Solving the Coupled Equations

- Numerov integration of equations with local couplings: ‘exact’
- Iteration on non-local couplings (eg. transfers).
- Use Pade acceleration if \(n \)-step DWBA diverges.
- Use James Christley’s coupled-Coulomb wave functions CRCWFN for long-range multipoles
- Isocentrifugal approx.

- R-matrix solutions:
 - Expand on eigenstates of diagonal optical potls
 - Need Buttle corrections.
 - More stable numerically
- Lagrange-mesh method:
 - From Daniel Baye (ULB)
 - No Buttle correction needed
- MPI: to solve \(J^\pi \) sets in parallel.
- OPENMP: to solve coupled equations for given \(J^\pi \).
Breakup: beyond 2-body channels

- **CDCC:**
 - Use continuum single-particle states
 - Orthonormalized in segments.
 - Post-processing by Jeff Tostevin for coincidence breakup cross sections.
 - Converges ok (if no transfer bound states!)

- **XCDCC**
 - Neil Summers extended CDCC method to deal with deformed core states in single-particle states.
 - Example for breakup of $^{11}\text{Be} = ^{10}\text{Be}(0^+, 2^+) + n$
Coherent multistep effects

$^8\text{B} + ^{58}\text{Ni}$ breakup at 26 MeV

$^{124}\text{Sn}(p,t)$ at 25 MeV

Nunes & Thompson, PRC 59, 2652 (1999)

Thompson, in Broglia et al (2013)
Input Formats

- **OLD style #1:**
 - Card inputs cols 1—72

- **NAMELIST style #2:**
 - Fortran var=value text

- **CDCC style #3:**
 - Generate easily the NAMELIST sets of bins and couplings for CDCC calculations.

Output Formats

- Cross sections $\sigma(\theta)$
- Amplitudes $f_{mm':m'M'}(\theta)$
- CDCC amplitudes for post-processing.
Sfresco: searching for χ^2 minimums

- **Define data with errors:**
 - Energy and/or angle data
 - Polarization data
 - Angle-integrated data
 - Phase shifts in given channel
 - Fitted bound state parameters

- **Define parameters**
 Initial values and limits of:
 - Optical parameters
 - Spectroscopic amplitudes
 - R-matrix pole energies & widths
 - Data normalizations

- **Searching**
 - Interactive or given method
 - Uses MINUIT
 - Plot initial or final fits
 - Trace χ^2 progress
 - Restart at any trial set.
Current Developments

LLNL:
- General nonlocal potentials
- Effective masses $m^*(R)$
- Lane couplings for IARs
- IAR non-orthogonality (p,p')
- Semi-direct capture step
- Surface operator for transfer

Jeff Tostevin:
- Breakup coincidence cross sections with core excitation in XCDCC
- Simple zero-range transfers

Alex Brown
- Using shell-model two-nucleon overlaps for transfers (seq+sim).

Antonio Moro:
- Stabilizing the solutions from Numerov method
- More NN standard forms for tensor forces
- Deformations in optical potentials in transfer operator
Missing Capabilities

- Core transitions in electromagnetic particle steps.
- Perey-Buck nonlocality in optical potentials.
- Spin-dependence of optical potentials in transfer operators.
- Energy-dependence of optical potentials in transfer operators.
- Uniform treatment of antisymmetrization and identical particles.
- Convergence problems: CDCC breakup with all-order couplings to transfer channels.