Testing Formalisms for Deuteron Breakup and Transfer Reactions

Neelam Upadhyay

NSCL, Michigan State University, USA

In Collaboration with: A. Deltuva (Universidade de Lisboa, Portugal)
Filomena Nunes (NSCL, Michigan State University, USA)

This work is supported by U.S. Department of Energy under the grant number DE-SC0004087 and High Performance Computer Center (HPCC) at MSU.
Single-particle states

\[^{208}\text{Pb}(d,p)^{209}\text{Pb} \]

\[^{132}\text{Sn}(d,p)^{133}\text{Sn} \]

- Study nature of single-particle state
- Tool: (d,p) reactions
- Important to have reaction theory providing accurate description.

Theories & Test Cases

- Deuteron → loosely bound system

- Theories including deuteron breakup:
 1. T-matrix Continuum Discretized Coupled Channels Method
 Includes breakup to all orders in complete basis of projectile bound and continuum states, but replaces exact 3-body wave function by CDCC wave function in the transfer amplitude.
 2. Alt, Grassberger, Sandhas Formalism (Faddeev-AGS)
 Explicitly includes breakup and transfer channels to all orders.

- Our aim: To quantify accuracy of CDCC.

- We study three test cases as a function of beam energy.
 1. 10Be(d,p)11Be(g.s.) @ $E_d = 21.4, 40.9 \& 71$ MeV
 2. 12C(d,p)13C(g.s.) @ $E_d = 12 \& 56$ MeV
 3. 48Ca(d,p)49Ca(g.s.) @ $E_d = 56$ MeV
3-body Hamiltonian

For pertinent comparison, we construct a simple 3-body Hamiltonian

\[H_{3b} = \hat{T}_R + \hat{T}_r + U_{pA} + U_{nA} + V_{pn} \]

\(\hat{T}_R, \hat{T}_r\): kinetic energy operators
\(V_{pn}\): Deuteron binding potential → Gaussian Potential
\(U_{pA}\): proton-target optical potential Chapel-Hill Global Parametrization
\(U_{nA}\): neutron-target optical potential (spin-orbit neglected)

The interactions between all pairs are spin independent.

Binding Potentials for neutron-target in final state

\((r_0 = 1.25 \text{ fm} & a_0 = 0.65 \text{ fm})\)

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>(nl)</th>
<th>(S_n) (MeV)</th>
<th>(V_{nA}) (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{10}\text{Be})</td>
<td>(2s)</td>
<td>0.504</td>
<td>57.064</td>
</tr>
<tr>
<td>(^{12}\text{C})</td>
<td>(1p)</td>
<td>4.947</td>
<td>39.547</td>
</tr>
<tr>
<td>(^{48}\text{Ca})</td>
<td>(2p)</td>
<td>5.146</td>
<td>48.905</td>
</tr>
</tbody>
</table>
Elastic cross sections

Deuterons on 10Be

Elastic cross section for deuterons on 10Be at:
(a.) $E_d = 21.4$ MeV, (b.) $E_d = 40.9$ MeV and (c.) $E_d = 71$ MeV.

- In CDCC and Faddeev calculations (FADD2), U_{pA} & U_{nA} are calculated at half the deuteron energy (E_d).
- Small disagreement between CDCC & Faddeev at angles $> 80^\circ$.
Elastic cross sections for deuterons on 12C at:
(a.) $E_d = 12$ MeV and (b.) $E_d = 56$ MeV.

- At lowest energy, large disagreement between CDCC & Faddeev at angles $> 70^\circ$.
- Increase in beam energy improves agreement.
Elastic cross sections for deuterons on 12C at:
(a.) $E_d = 12$ MeV and (b.) $E_d = 56$ MeV.

- At lowest energy, large disagreement between CDCC & Faddeev at angles $> 70^\circ$.
- Increase in beam energy improves agreement.
- For 48Ca at $E_d = 56$ MeV, better agreement in two methods \rightarrow behaviour similar to 12C @ 56 MeV!
Transfer cross sections: Testing Formalism

Results indicate:

▶ Small Coulomb effects at very forward angles.
▶ Continuum has strong influence on Transfer process.
Transfer cross sections: Testing Formalism

$^{10}\text{Be} \ (d, \ p) \ ^{11}\text{Be} (\text{g.s.})$

Transfer cross section for deuterons on ^{10}Be at: (a.) $E_d = 21.4$ MeV, (b.) $E_d = 40.9$ MeV and (c.) $E_d = 71$ MeV.

Results indicate:

- Small Coulomb effects at very forward angles.
- Continuum has strong influence on Transfer process.
Transfer cross section for deuterons on 10Be at: (a.) $E_d = 21.4$ MeV, (b.) $E_d = 40.9$ MeV and (c.) $E_d = 71$ MeV.

- In CDCC calculation, $U_{pA} \& U_{nA}$ are calculated at half the deuteron energy (E_d).
- In Faddeev calculations, U_{pA} is calculated at proton energy (E_p) in the exit channel. U_{nA} is calculated at $E_d/2$ for all partial waves except for one corresponding to the bound state.
- Disagreement increases with beam energy.
Transfer cross sections: CDCC v/s Faddeev

Transfer cross section for deuterons on ^{12}C at:
(a.) $E_d = 12$ MeV and (b.) $E_d = 56$ MeV.

- Disagreement increases with beam energy.

Transfer cross section for $^{48}\text{Ca} (d, p)$ $^{49}\text{Ca}(g.s.)$ at $E_d = 56$ MeV.
Estimate of Disagreement

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Energy (MeV)</th>
<th>nl</th>
<th>θ (deg.)</th>
<th>$\Delta_{\text{FADD-CDCC}}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10Be(d,p)</td>
<td>21.4</td>
<td>$2s$</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>40.9</td>
<td>$2s$</td>
<td>0</td>
<td>-31</td>
</tr>
<tr>
<td></td>
<td>71</td>
<td>$2s$</td>
<td>0</td>
<td>-44</td>
</tr>
<tr>
<td>12C(d,p)</td>
<td>12</td>
<td>$1p$</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>$1p$</td>
<td>0</td>
<td>-29</td>
</tr>
<tr>
<td>48Ca(d,p)</td>
<td>56</td>
<td>$2p$</td>
<td>0</td>
<td>17</td>
</tr>
</tbody>
</table>
Estimate of Disagreement

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Energy (MeV)</th>
<th>(nl)</th>
<th>(\theta) (deg.)</th>
<th>(\Delta_{\text{FADD-CDCC}}) (%)</th>
<th>(\Delta_{\text{FADD-ADWA}}) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{10}\text{Be}(d, p))</td>
<td>21.4</td>
<td>2s</td>
<td>0</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>40.9</td>
<td>2s</td>
<td>0</td>
<td>-31</td>
<td>-4</td>
</tr>
<tr>
<td></td>
<td>71</td>
<td>2s</td>
<td>0</td>
<td>-44</td>
<td>-31</td>
</tr>
<tr>
<td>(^{12}\text{C}(d, p))</td>
<td>12</td>
<td>1p</td>
<td>14</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>1p</td>
<td>0</td>
<td>-29</td>
<td>-45</td>
</tr>
<tr>
<td>(^{48}\text{Ca}(d, p))</td>
<td>56</td>
<td>2p</td>
<td>0</td>
<td>17</td>
<td>21</td>
</tr>
</tbody>
</table>

\(^{1}\) F. M. Nunes & A. Deltuva, PRC\textbf{84}, 034607 (2011)
Estimate of Disagreement

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Energy (MeV)</th>
<th>nl</th>
<th>θ (deg.)</th>
<th>$\Delta_{FADD-CDCC}$ (%)</th>
<th>$\Delta_{FADD-ADWA}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{10}\text{Be}(d, p)$</td>
<td>21.4</td>
<td>$2s$</td>
<td>0</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>40.9</td>
<td>$2s$</td>
<td>0</td>
<td>-31</td>
<td>-4</td>
</tr>
<tr>
<td></td>
<td>71</td>
<td>$2s$</td>
<td>0</td>
<td>-44</td>
<td>-31</td>
</tr>
<tr>
<td>$^{12}\text{C}(d, p)$</td>
<td>12</td>
<td>$1p$</td>
<td>14</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>$1p$</td>
<td>0</td>
<td>-29</td>
<td>-45</td>
</tr>
<tr>
<td>$^{48}\text{Ca}(d, p)$</td>
<td>56</td>
<td>$2p$</td>
<td>0</td>
<td>17</td>
<td>21</td>
</tr>
</tbody>
</table>

1 F. M. Nunes & A. Deltuva, PRC84, 034607 (2011)

Effect of choice of proton energy at which proton interaction is calculated in Faddeev calculations.
Conclusions & Outlook

1. CDCC and Faddeev calculations are performed for varied test cases spanning large beam energy range.
 - Good agreement in Elastic cross sections.
 - Transfer Process: Two methods are in good agreement at low energy. Disagreement increases with the beam energy, however systematic uncertainty also increases.

2. Comparison of two methods for breakup is in progress.

3. Studying Faddeev formalism in momentum space
 - To include Optical potentials in separable form.
 - Solve Faddeev-AGS equations with core excitations.
Thank you very much for your attention
Methods Used

▶ In CDCC:

▶ The full 3-body wave function is expanded in terms of a complete basis of the deuteron’s bound and continuum states.

\[\Psi = \sum_{\alpha} \phi_{\alpha} \psi_{\alpha} \]

where, \(\phi_{\alpha} \): Deuteron eigen states.
\(\psi_{\alpha} \): Relative wave function between deuteron and target

▶ The transfer matrix element is written as

\[T = \langle \chi^{(-)} \phi_{nT}^{(-)} | V_{pn} + U_{pT} - U^f | \Psi \rangle \]

▶ In Faddeev:

▶ Set of coupled integral equations in terms of 3-body AGS transition operators are solved.

▶ Coulomb is treated using the renormalization and screening techniques.