Coulomb distorted nuclear matrix elements in momentum space.

II. Computational aspects

V. Eremenko1,5 L. Hlophe1 N. J. Upadhyay2 Ch. Elster1
F. M. Nunes2 G. Arbanas3 J. E. Escher4 I. J. Thompson4

TORUS Collaboration† (http://reactiontheory.org)

1Institute of Nuclear & Particle Physics \textit{and} Dept. of Physics & Astronomy,
Ohio University
2NSCL, Michigan State University
3Oak Ridge National Laboratory
4Lawrence Livermore National Laboratory
5Moscow State University, Moscow, Russia
†Supported by U.S. Department of Energy

Jefferson Lab., Newport News, VA · 2013-10-25
(d, p) reactions

⇒

Effective Three-Body problem

⇒

Faddeev equations with Coulomb interaction and nucleus excitation

⇒

Optical Short Range (Nuclear) Potentials in Separable Form preferred

- Faddeev equations ⇒ preferrably solved in momentum space.
- (d, p) reaction with nucleus excitation ⇒ Separable Optical Short Range Potential.
- Coulomb interaction ⇒ switching to Coulomb distorted basis.

Required: Computational implementation of Separable Optical Potential in Coulomb distorted basis in momentum space.
Phenomenological optical potentials are usually in Woods-Saxon form in coordinate space.

Example: CH89 (central part)

\[
U_{\text{nucl}}(r) = V(r) + i(W(r) + W_s(r))
\]

Separabilization: generalized Ernst-Shakin-Thaler scheme for complex optical potentials.

Now the form factors are not the arbitrary functions, but half-shell \(t \)-matrices.

\[
U = \sum_{ij} u|\Psi_i^{(+)}\rangle \lambda \langle \Psi_j^{(-)}|u
\]

Hint: In/Out states are necessary to fulfill reciprocity theorem.
Quality of Separable Optical Potential: $l = 0$, S-matrix
Half-shell t-martix in Coulomb basis

For complex potentials, Coulomb distorted half-shell t-matrices (form factors) are not the complex conjugate of one another:

\[u_{li}^{(C,1)}(p_\alpha) = \frac{1}{2\pi^2} \int dp \, p^2 \, u_{li}(p) \psi^C_{p_\alpha l}(p); \]
\[u_{li}^{(C,2)}(p_\alpha) = \frac{1}{2\pi^2} \int dp \, p^2 \, u_{li}(p) [\psi^C_{p_\alpha l}(p)]^*; \]

\(\psi^C_{p_\alpha l}(p) \) is the half-shell Coulomb scattering wave function for the asymptotic momentum \(p_\alpha \):

\[|\psi^C_{p_\alpha l}(p)\rangle = [1 + G_0(p_\alpha)T^C] |p\rangle. \]

- Special functions of complex arguments.
- Different representations for pole and non-pole regions.
- Gel’fand-Shilov regularization to deal with oscillatory singularity.
\[
\left\{ u^{(C,1)}_{li}(p_\alpha) = \frac{1}{2\pi^2} \int dp \, p^2 u_{li}(p) \psi_{lp_\alpha}^C(p) \right\}
\]

\(n + ^{208}\text{Pb} \) half-shell T-matrix (form factor) distorted as \(p + ^{208}\text{Pb} \)

\(L = 0; \) First term of rank 5

† (http://reactiontheory.org)

(Institute of Nuclear & Particle Physics and Dept. of Physics & Astronomy, Ohio University NSCL, Michigan State University Oak Ridge National Laboratory Lawrence Livermore National Laboratory Moscow State University, Moscow, Russia

† Supported by U.S. Department of Energy

DNP Meeting’13 2013-10-25
\[
\left\{ u^{(C,1)}_{li}(p_\alpha) = \frac{1}{2\pi^2} \int dp \, p^2 \, u_{li}(p) \psi^C_{lp_\alpha}(p) \right\}
\]

\(p + ^{12}\text{C} \) half-shell short range T-matrices (form-factors)

\[L = 0; \text{First term of rank 4} \]
Summary & Outlook

- **Faddeev-AGS framework in Coulomb basis passed the first test!**
 - Momentum space nuclear form-factors (half-shell T-matrices) obtained in a Coulomb distorted basis for high charges for the first time.
 - Ernst-Shakin-Thaler separabilization procedure successfully generalized for the case of complex optical potentials in momentum space. Realistic Separable (Generalized EST-type) Optical Potentials obtained for $n + ^{12}\text{C}$, ^{48}Ca, ^{123}Sn, and ^{208}Pb cases.
 - Algorithms to compute $\psi^C_{p\alpha l}(p)$ and the overlap integral successfully implemented for Generalized EST-type optical potentials. “Oscillatory singularity” of $\psi^C_{p\alpha l}(p)$ at $p = p_\alpha$ successfully regularized.

Near Future

Implementation of Faddeev-AGS equations in Coulomb basis to compute observables for (d, p) reactions.
The TORUS Collaboration*:

Few-Body Group:

- **Ch. Elster, V. Eremenko†‡, and L. Hlophe‡**: Institute of Nuclear and Particle Physics, and Department of Physics and Astronomy, Ohio University, Athens, OH 45701.

- **F. M. Nunes and N. J. Upadhyay‡**: National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824.

- **G. Arbanas**: Nuclear Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831.

- **J. E. Escher and I. J. Thompson**: Lawrence Livermore National Laboratory, L-414, Livermore, CA 94551.

* Funding provided by U. S. Department of Energy.
† Post-Docs or Grad Students.
‡ M. V. Lomonosov Moscow State University, Moscow, 119991, Russia.
Half-shell t-matrix: Difficulties to be addressed

\[\psi_{p\alpha l}^C(p) = -\frac{4\pi}{\eta} e^{-\pi\eta/2} \Gamma(1 + i\eta) e^{i\alpha l} \left[\frac{(p + p\alpha)^2}{4pp\alpha} \right]^l \times \text{Im} \left[e^{-i\alpha l} \frac{(p + p\alpha + i0)^{-1+i\eta}}{(p - p\alpha + i0)^{1+i\eta}} \right] _2 F_1 \left(-l, -l - i\eta; 1 - i\eta; \frac{(p - p\alpha)^2}{(p + p\alpha)^2} \right) ; \]

\[\eta = Z_1 Z_2 e^2 \mu/p\alpha. \]

- Computing special functions of complex arguments.
- Two different representations for pole and non-pole regions are required due to \(_2 F_1(a, b; c; z) \).
- \(\psi_{p\alpha l}^C(p) \) has ‘oscillatory singularity’ at \(p = p\alpha \).
 \[\mapsto \text{Gel’fand-Shilov regularization} \text{ (reduce integrand around the pole, subtracting 2 terms of Taylor expansion)}. \]
Two representations of $\psi_{p\alpha l}^C(p)$

Pole:

$$
\psi_{p\alpha l}^C(p) = -\frac{4\pi}{p} e^{-\pi\eta/2} \Gamma(1 + i\eta) e^{i\alpha_l} \left[\frac{(p + p\alpha)^2}{4pp\alpha} \right]^l \\
\times \text{Im} \left[e^{-i\alpha_l} \frac{(p + p\alpha + i0)^{-1+i\eta}}{(p - p\alpha + i0)^{1+i\eta}} 2F_1 \left(-l, -l - i\eta; 1 - i\eta; \zeta \equiv \frac{(p - p\alpha)^2}{(p + p\alpha)^2} \right) \right].
$$

Switching point: $\zeta = \chi \approx 0.34$.

Non-Pole:

$$
\psi_{p\alpha l}^C(p) = -\frac{4\pi\eta e^{-\pi\eta/2} p\alpha (pp\alpha)^2}{(p^2 + p\alpha^2)^{l+1+i\eta}} \left[\frac{\Gamma(l + 1 + i\eta) \Gamma(1/2)}{\Gamma(l + 3/2)} \right] \\
\times \left[p^2 - (p\alpha + i0)^2 \right]^{-1+i\eta} 2F_1 \left(\frac{l + 2 + i\eta}{2}, \frac{l + 1 + i\eta}{2}; l + \frac{3}{2}; \chi \equiv \frac{4p^2p\alpha^2}{(p^2 + p\alpha^2)^2} \right).
$$

$\eta = Z_1 Z_2 e^2 \mu/p\alpha$.

Gel’fand-Shilov regularization is the generalization of the Principal value regularization. The idea is to reduce the integrand $S(x)$ near the singularity$^1,^2$:

$$\int_{-\Delta}^{\Delta} dx \frac{\varphi(x)}{x^{1+i\eta}} = \int_{-\Delta}^{\Delta} dx \frac{\varphi(x) - \varphi(0) - \varphi'(0)x}{x^{1+i\eta}} - \frac{i\varphi(0)}{\eta} \left[\Delta^{-i\eta} - (\Delta)^{-i\eta}\right] + \ldots$$

1This formula is significantly simplified.

Pinch singularity and avoiding it

Pinch

\[\psi_{lp\alpha}^C(k) \text{ has a singularity at } k = p\alpha. \text{ In general case of nuclear potential } V(p, p\alpha), \]

\[(\psi_{lp}^C(k))^* \xrightarrow{k=p} V_{lpp\alpha}(k, \kappa) \xleftarrow{\kappa=p} \psi_{lp\alpha}^C(\kappa). \] (1)

G. Cattappan et al. suggestion:
in case of separable potential, double integration procedure split onto two independent integrals, allowing to deal with this singularities separately, avoiding pinch\(^a\).