Higher-Order Contributions to Capture Processes

Goran Arbanas (ORNL)
Ian Thompson (LLNL)
Jutta Escher LLNL

in collaborations with:
Brett Manning (Rutgers)
Ray Kozub (TTU/ORNL)
Michael Smith (ORNL)
Shisheng Zhang (Beihang Univ./ORNL)

TORUS Collaboration Meeting
Michigan State University, East Lansing, MI
June 9, 2014
Overview

- Computation of capture via collective rotational states (2+, 4+)
 - Higher-order than direct capture
 - Fe-56 (n,g); relevant to CIELO collaboration

- Study of Nickel MACS (Rituparna Kanungo/TRIUMF)
 - Direct capture & compound resonance (s- & p-wave) capture important

- Study of $^{130}\text{Sn}(n,\gamma)^{131}\text{Sn}$ from (γ,n)
 - B. Manning computed (n,g) G.S. from Adrich’s (γ,n) data; detailed balance
 - Compute total (n,\gamma) from (γ,n) γ-strength function using TALYS

- Quantifying the improvement to MACS that could be hoped for from an improved theory (relative to Hauser-Feshbach) of (n,\gamma):

- Gamow-Shell Model computation of (n,g) near 132-Sn
 - Need effective interaction for tin isotopes (late 2014, or 2015)
Direct \((n, \gamma) +\) coupling to \(2+, 4+\)

- Used FRESCO to consistently couple to 2+ and 4+ states
 - In the incoming and the outgoing states
 - Prior to this work only incoming or outgoing but not both
 - Initiated a study of Ca-\{40,42,44,46,48\} isotopes
 - Computed Fe-56 because relevant to CIELO int.’l collab. nuclear data
 - 0+ (G.S.), 2+, 4+ rotational band states (but not clear for 6+, 8+…)
 - Real vs. Complex Koning-Delarche Opt. Pot. (cf. floor of capture data)
$^{62}\text{Ni}(n,\gamma)^{63}\text{Ni}$: Direct vs. Resonant capture

- **Direct Capture (DC) issues:**
 - $3s1/2$ zero-energy "resonance" of real (e.g. Woods-Saxon) pot. for $A \approx 55-60$
 - May yield unrealistic (too large) DC cross section

- **Resonant capture (RC) issues:**
 - γ-ray width of the 4.6 keV resonance underestimated:
 - $(0.76 \text{ vs. } 2.895) \text{ eV}$ (plotted below) \rightarrow 30 keV MACS: $(5.2 \text{ vs. } 14.2) \text{ mb}$; 9 mb too small!
 - p-wave resonances were omitted from MACS: another 10 mb missing!

![Graphs showing cross-section versus incident energy](image.png)

$\Gamma_\gamma = 0.76 \text{ eV}$

pink: ENDF File 2: s-wave res. only

green: ENDF evaluated data

$\Gamma_\gamma = 2.895 \text{ eV}$

narrow p-wave resonances visible in the ENDF data (green);
$^{62}\text{Ni}(n,\gamma)^{63}\text{Ni}: \text{Direct vs. Resonant capture}

<table>
<thead>
<tr>
<th>\ MACS 30 keV</th>
<th>Rauscher [mb]</th>
<th>This work</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resonant (RC)</td>
<td>$5.2 \pm (5%)$</td>
<td>$24.2 \pm (5%)$</td>
<td>n/a</td>
</tr>
<tr>
<td>Direct (DC)</td>
<td>5.5 ± 0.8</td>
<td>$0.4 \pm (20%)$</td>
<td>n/a</td>
</tr>
<tr>
<td>Total</td>
<td>10.5 ± 0.8</td>
<td>$24.8\pm (>5%)$</td>
<td>$25.8\pm1.8(\text{stat})\pm1.9(\text{sys})$</td>
</tr>
</tbody>
</table>

- **DC in this work computed by CUPIDO (Dietrich, LLNL):**
 - for the real part of the Koning-Delaroche optical potential
 - Its s-wave “resonance” occurs near $A\sim55$, so possibly safer than Rauscher’s potential
 - Analogous computation of MACS on 58,60Ni supported by high-res. data
 - A decreasing trend of DC for $\{58,60,62\}$Ni $\{1.36, 0.54 0.4\}$ mb observed:
 - Expected from a general formula for E1 s-wave neutron capture:
 - $\text{SF}^*(\text{BE}+\text{E}_n)^3 \leftarrow$ both SF and BE slowly decreasing as neutron number increases
 - The above may boost confidence into our DC computations.

- **RC in this work: corrected Γ_γ of 4.6 keV res. + p-wave resonances**

Estimating errors of Hauser-Feshbach (HF)

- HF uses optical potential transmission coefficients
 - Yields energy-averaged cross-sections (*gross* structure)
 - Energy-averaging interval is on the order of 1 MeV

- What if we had an *intermediate* structure theory?
 - s.t. yields energy-averaged cross sections averaged over ~0.1 MeV
 - Corresponding to the width of nominal doorway states; e.g. 2p-1h states

- Performed a numerical estimate by energy-averaging 62Ni(n,γ) data
 - Followed by Maxwellian averaging for KT= 30 keV; cf. TALYS HF MACS

<table>
<thead>
<tr>
<th>E-avg. interval [MeV]</th>
<th>MACS [mb] kT=30 keV</th>
<th>TALYS Γ_γ-strength</th>
<th>renormalized</th>
<th>unrenor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>24.2</td>
<td>Kopecky-Uhl Lorentz.</td>
<td>31</td>
<td>8</td>
</tr>
<tr>
<td>0.1</td>
<td>24.7</td>
<td>Brink-Axel Lorentzian</td>
<td>29</td>
<td>35</td>
</tr>
<tr>
<td>0.2</td>
<td>20.3</td>
<td>Hartree-Fock BCS</td>
<td>n/a</td>
<td>13</td>
</tr>
<tr>
<td>0.5</td>
<td>8.8</td>
<td>Hartree-Fock-Bogol.</td>
<td>n/a</td>
<td>13</td>
</tr>
<tr>
<td>1.0</td>
<td>7.0</td>
<td>Goriely’s hybrid model</td>
<td>30</td>
<td>12</td>
</tr>
</tbody>
</table>

- The improvement in accuracy may be appreciable in this case.
Intermediate Struct. Theory of Reactions

- How would an ideal Intermediate Structure Theory improve MACS
 1. Compute MACS of the Hauser-Feshbach (OMP) vs. MACS of the data
 2. Compute MACS of the averaged data 100 keV vs MACS of

- KKM formally extended to intermediate structure (UNEDF)
 - Via doorway projection operators

Atomic Data and Nuclear Data Tables 76, 70–154 (2000)

FIG. 3. Comparison of Maxwellian-averaged \((n, \gamma)\) cross sections for 30 keV thermal energy calculated with the statistical model code NON-SMOKER [3] with experimental data. The dashed lines are drawn to illustrate that the calculations tend to overestimate the cross sections near magic neutron numbers by up to a factor two, but are much more reliable elsewhere.
DC vs RC near closed shell nuclei

• Motivated by our computation of $^{130,132}\text{Sn}(n,\gamma)$ Direct Capture (DC)
 – $^{132}\text{Sn}(n,\gamma)$: DC \gg RC is generally accepted
 – $^{130}\text{Sn}(n,\gamma)$: DC \ll RC is estimated by Hauser-Feshbach models
 • But not confirmed experimentally
 • For ^{48}Ca and ^{208}Pb data suggest DC \gg RC (in support of 132Sn DC \gg RC above)
 • For ^{46}Ca and ^{206}Pb data suggest DC \ll RC; does this imply $^{130}\text{Sn}(n,\gamma)$ DC \ll RC too?
 • $^{124}\text{Sn}(n,\gamma)$ (the heaviest stable tin) plotted; shows many compound resonances
 – Its $kT=30\text{keV}$ MACS is ~10 mb
 – consistent with some HF models
 – but still inconclusive Re: $^{130}\text{Sn}(n,\gamma)$
 – Could an intermediate structure model give answer?

$^{124}\text{Sn}(n,\gamma)$ ENDF evaluated data
\textbf{\(^{130}\text{Sn}(n,\gamma)^{131}\text{Sn}_{\text{g.s.}}\) from \(^{131}\text{Sn}_{\text{g.s.}}(\gamma,n)^{130}\text{Sn}\)}

- Using principle of detailed balance (g.s. only)
 - \((\gamma, n)\) a surrogate reaction for \((n, \gamma)\); usually applied to lighter nuclei
 - Adrich (2005) \(^{131}\text{Sn}_{\text{gs}}(\gamma, n)\) data yields \(^{130}\text{Sn}_{\text{gs}}(n, \gamma)\) \(E_n < 1.2\) MeV, ~ 10 x DC
 - even with large uncertainties; and without pygmy dipole resonance
 - A. Tonchev (TUNL) monochromatic laser (1-3)% energy variance
 - Stable nuclei.

\[\text{Diagram}\]
\((n,\gamma) \) from \((\gamma,n)\) \(\gamma\)-strength function method

- Goriely, Hillaire, Koning (TALYS)
 - \(\gamma\)-strength function method to compute \((n,\gamma)\) from \((\gamma,n)\) & \((\gamma,\gamma')\) data
 - Total capture cross section (not just capture c.s. to g.s.)
 - Correspondence in progress. References
Proposal for \((n, \gamma) \) in Gamow Shell Model

- Higher order (2p1h, 3p2h, ...) components in bound/resonant states
 - More complex than direct capture toward compound resonant capture
 - Comparison with Hauser-Feshbach

\[
\frac{d\sigma_{fc}}{dE_\gamma d\Omega_\gamma} = \frac{1}{\phi_{inc}} \frac{2\pi}{\hbar} \frac{E_\gamma^2}{(hc)^3} |T_{fc}|^2 \delta(E - E_f).
\]

- Coupled channels

- Proposal is nearly finalized
 - Pending effective interaction

\[
T_{fc} = \langle \Psi_f^{(A)} | H_\gamma | \Phi_c \rangle
\]

Table 1. Computational requirements of GSM on truncated space of tin isotopes near \(^{132}\)Sn needed for neutron capture computations. The columns display the mass number \(A \), dimension of the GSM truncated space, the memory requirements of the Slater determinants (SD) in kilobytes, the memory requirement of number-density matrices (SD|\(a^\dagger a \rangle SD \rangle \) in kilobytes, the number of Hamiltonian’s \(N \)-body matrix elements (NBME), and the percentage of these NBMEs that are not zero.

| \(A \) | Dimension | SD [kB] | \(\langle SD|a^\dagger a|SD \rangle \) [kB] | NBME’s\(\neq 0 \) \(\times 10^3 \) | \text{fraction NBME’s\(\neq 0 \) \%} |
|---|---|---|---|---|---|
| 129 | 379,430 | 563,421 | 467,232 | 651,549 | 0.5 |
| 130 | 59,886 | 80,382 | 58,667 | 41,271 | 1.2 |
| 131 | 7,294 | 8,305 | 5,629 | 7,532 | 14.2 |
| 132 | 691 | 553 | 395 | 239 | 50.1 |
| 133 | 46 | 1 | 15 | 2 | 100.0 |
| 134 | 662 | 51 | 676 | 226 | 51.7 |
| 135 | 13,078 | 1,612 | 16,076 | 18,409 | 10.8 |
| 136 | 136,805 | 29,693 | 219,202 | 122,790 | 0.7 |
| 137 | 1,289,881 | 377,388 | 2,512,421 | 3,147,875 | 0.2 |
Review and Outlook

• Direct neutron capture on non-spherical nuclei was modeled by rotational band states 2+, 4+ in incoming and outgoing partitions, and their effect, computed by Fresco, was significant for 56Fe.

• The improvement to stellar MACS that could be achieved by an ideal intermediate structure reaction theory over Hauser-Feshbach
 – The upper-limit promising, but a realistic theory would not do quite as well

• Used detailed balance and Adrich’s 131Sn(γ,n) to estimate the lower limit of compound resonant capture on 130Sn(n,γ)131Sn_{g.s.}
 – It appears to be greater than the Direct Capture component
 – Exploring the prospect of using g-strength function to compute total compound resonant capture, to all states (not just the g.s.)

• Gamow Shell Model; an intermediate structure theory of reactions?
 – An attempt to apply it to 132Sn(n,γ) is planned for 2015